Perfusion-weighted magnetic resonance imaging in the evaluation of focal neoplastic and infectious brain lesions

Valdeci Héli Floriano¹, José Roberto Lopes Ferraz-Filho², Antonio Ronaldo Spotti³, Waldir Antônio Tognola⁴

Resumo

A ressonância magnética (RM) é o método de diagnóstico por imagem de escolha na avaliação encefálica, entretanto as técnicas convencionais de RM podem apresentar limitações por fornecerem somente parâmetros qualitativos ou anatômicos. Nas últimas décadas, têm surgido novas técnicas complementares de RM que fornecem parâmetros quantitativos proporcionando informações funcionais ou metabólico-bioquímicas. A perfusão é atualmente uma das técnicas que vem se apresentando como uma importante ferramenta na neurorradiologia. O objetivo deste artigo é apresentar uma revisão sobre o papel da sequência de perfusão por RM na avaliação das lesões focais neoplásicas e infecciosas, únicas ou múltiplas, do encéfalo. O estudo da perfusão encefálica pode ser realizado como método complementar às técnicas convencionais de RM, permitindo o acesso aos parâmetros hemodinâmicos de uma maneira não invasiva e demonstrando o grau de angiogênese das lesões sendo, portanto, útil na diferenciação entre lesões neoplásicas e infecciosas, tumor primário e metástase única e no seguimento pós-tratamento para a diferenciação entre recidiva tumoral e radionecrose, através da demonstração da presença ou ausência de hiperperfusão.

Palavras-chave: perfusão, ressonância magnética, encéfalo, neoplasias, infecção.

Abstract

Magnetic resonance imaging (MRI) is the gold standard method for brain assessment however the conventional MRI techniques may present limitations by only providing qualitative or anatomic parameters. Over recent decades, new complementary MRI techniques have been developed that supply quantitative parameters providing functional or metabolic-biochemical data. Perfusion-weighted imaging, one of these techniques, has become a powerful tool in neuroradiology. The goal of this article is to present a review about the role of perfusion-weighted MRI in the evaluation of solitary or multiple, neoplastic and infectious, focal brain lesions. Brain perfusion studies can be achieved as a complementary method to conventional MRI techniques to provide hemodynamic parameters using a non-invasive technique. This method demonstrates the degree of angiogenesis of lesions and is thus useful in the differentiation between neoplastic and infectious lesions, primary tumors and solitary metastases and in the post-treatment follow up to differentiate between tumoral recurrence and radionecrosis by identifying the presence or absence of hyperperfusion.

Keywords: perfusion, magnetic resonance imaging, brain, neoplasms, infection.
Introduction

Magnetic resonance imaging (MRI) is the gold standard method in brain assessment. However, the conventional MRI techniques may present limitations by only providing qualitative or anatomic parameters. The main limitations include the difficulty to identify the exact limits of the lesion, the degree of malignancy and the differentiation between tumoral recurrence and radionecrosis. Over recent decades, new complementary MRI techniques have been developed that supply quantitative parameters providing functional or metabolic-biochemical data. Perfusion-weighted imaging (PWI), one of these techniques, has become a powerful tool in neuroradiology.

PWI allows the examination of the dynamics of blood flow in the brain. It performs a quantitative analysis of the cerebral microcirculation, which can be utilized in the diagnosis of diseases such as neoplasms and infectious lesions. Dynamic susceptibility contrast-enhanced (DSC) MRI is one of the most used methods for the evaluation of cerebral hemodynamics.

Technical considerations

The main contraindication of techniques that employ paramagnetic gadolinium-based contrast agents, is their association with the development of nephrogenic systemic fibrosis in patients with advanced renal failure (glomerular filtration rates of less than 30 mL/min/1.73 m²), in particular dialysis patients.

Although DSC MRI is the technique most commonly employed in the clinical practice, the ASL technique has demonstrated promising results in clinical diagnosis. The production of perfusion images with ASL, contrary to the techniques that use exogen contrast agents, is totally non-invasive; its contrast agent is diffusible and has greater temporal resolution, reproducibility and measuring capacity. The limitations originate, mainly,
from its low signal-to-noise ratio, accentuated sensitivity to movement artifacts and the long time needed for the acquisition of images, which have been the impetus for research and development of different resources in an attempt to improve and, consequently, widen the technique’s clinical applicability.

Clinical applications

Conventional MRI with T1 and T2-weighted images is often utilized in the diagnosis of brain lesions with the evaluation of focal or diffused involvement, presence or absence of edema, hemorrhage, necrosis, increases in the intracranial pressure, mass effect and characterization of the pattern of contrast enhancement of the lesions, which may indirectly identify the degree of aggressiveness, even though there is controversy about the data obtained by this imaging method and the anatomopathological results.

According to Law et al. the presence of a disruption of the BBB is frequently associated to malignant neoplasms, however contrast enhancement of the lesion does not demonstrate the degree of malignity. The perilesional hyperintensity on conventional T2-weighted MRI presents a low specificity, and may represent tumoral infiltration, vasogenic edema or both. In respect to the mass effect and the presence of necrosis, Dean et al. stress that these parameters are the most important predictive factors of the degree of malignancy, however they are not specific.

The study of PWI can be utilized together with conventional MRI to demonstrate regional variations in the cerebral microcirculation by means of rCBV maps. Relative cerebral blood volume maps show vascularization of brain lesions, which indirectly estimate angiogenesis, thereby identifying lesions that may be similar to neoplasms, to infectious or inflammatory processes, to tumefactive demyelinating lesions or to necrosis induced by radiation.

Perfusion-weighted MRI in focal neoplastic lesions

Gliomas are the most common primary tumors of the central nervous system (CNS), accounting for 40% of all primary intracranial neoplasms, with glioblastoma multiforme being the most common malignant subtype corresponding to 12 to 15% of all intracranial neoplasms. Perfusion-weighted imaging studies of malignant gliomas show higher rCBV values (Figure 1) when compared to glial neoplasms with low degrees of anaplasia (Figure 2).

Although several authors have demonstrated significant correlations between the rCBV and the degree of malignancy of glial tumors, the increase in the vascularization does not necessarily signify malignancy. The best example is the oligodendroglioma, considered a non-astrocyte glial tumor that presents a high rCBV value (Figure 3) as, one characteristic of this tumor is its rich and delicate capillary network; histologically it is characterized with a low grade of malignancy.

Metastases are the most frequent intracranial tumors in adults and generally occur by hematogenous dissemination. Solitary metastasis occur in 30 to 50% of the cases thus making differential diagnosis with primary tumors difficult, mainly when there is no information about the involvement outside the CNS.

Brain perfusion-weighted MRI is not capable of differentiating primary tumors from solitary metastasis as both lesions are hypervascularized and thus present high rCBV values. However, there is a difference in the rCBV measured in the perilesional region which presents a higher value in primary tumors compared to metastases. This may be explained by the fact that in metastasis there is only vasogenic edema in the perilesional region without histological evidence of tumor beyond the outer enhancing margin. On the other hand, with primary tumors, the perilesional region presents with vasogenic edema and tumoral cell infiltration in the perivascular spaces.

Primary lymphomas of the CNS have been increasing in incidence in immunocompetent and immunodepressed individuals, representing up to 16% of all primary brain tumors. Lymphoma and toxoplasmosis are the most frequent focal brain lesions in acquired immunodeficiency syndrome patients and are difficult to differentiate by conventional MRI methods as they can be solitary or multiple and not infrequently exhibit peripheral enhancement by the contrast agent. The role of PWI is to detect and quantify angiogenesis and so it is consequently useful to differentiate between lymphomas, toxoplasmosis and highly malignant gliomas, although angiogenesis is not a prominent characteristic of lymphomas. Several authors have demonstrated that the rCBV values of lymphomas are higher than those of toxoplasmosis infections and lower than those of highly malignant glial neoplasms.
Intracranial extra-axial neoplasms are highly vascularized tumors that originate in the meninges, ventricles, choroid plexus and pineal gland. Studies of extra-axial tumors using the perfusion technique show immediate and persistent extravasation of the contrast agent during dynamic imaging due to the absence of the BBB with consequent errors in the measurement of the rCBV.\(^{11}\)

Perfusion-weighted MRI is a useful tool to choose the site for stereotactic biopsies by characterization of the area with the greatest rCBV, which has demonstrated high correlation with anatomopathological results.\(^{4,11,16,41,33,39}\)

The differentiation between tumoral recurrence and radionecrosis can not be exactly ascertained by conventional MRI even with the utilization of a contrast agent and thus remains a challenge as the therapeutic conduct of these two entities is totally different. According to Covarrubias et al.\(^{16}\) the damage of the BBB induced by radiotherapy determines the extravasation of the contrast agent to the interstice resulting in a lesion that can mimic tumoral recurrence. The evolutive control after treatment is frequently not useful, as radionecrosis generally occurs from six months to several years after radiotherapy, that is, the period during which recurrence is most probable. Additionally it is necessary to consider the possibility of coexistence of lesions.

Radionecrosis usually presents a low rCBV value, while in tumoral recurrence this value is high. Sugahara et al.\(^{54}\) determined the value of perfusion-weighted MRI in the evaluation of intra-axial expansive processes after radiotherapeutic treatment and demonstrated that rCBV values greater than 2.6 were indicative of tumoral recurrence and rCBV values lower than 0.6 indicated radionecrosis.
Perfusion-weighted MRI in focal infectious lesions

Intra-axial infectious lesions present a variable aspect in PWI studies depending on the immunological status of the patient and the aggressiveness of the infectious agent. In neurotoxoplasmosis lesions there is a reduction in the rCBV value measured at the lesion and the perilesional edema (Figure 4), with values below those of normal white matter. This hypoperfusion is explained by vasoconstriction in the solid marginal portion of the lesion determined by an increase in the interstitial pressure secondary to perilesional edema and by the reduction, or even absence, of vascularization inside the lesion. Another parasitic infection of the central nervous system that usually has low values of rCBV is cystercerosis. Although considered the most common parasitic infection of the CNS, its diagnosis remains difficult. Magnetic resonance findings of cystercerosis are variable and depend on the stage of the evolution of the infection. According to Amaral et al., the lack of hyperperfusion of the lesion makes the diagnosis of a neoplastic process is unlikely, thus implying a possible infectious cause (Figure 5).

In CNS tuberculosis, Batra & Tripathi demonstrated that a significant number of lesions present high rCBV values, similar to those found with cerebral gliomas. However, the differentiation with primary CNS tumors can be achieved by means of the measurement of the perilesional rCBV, as lesions by infection present low rCBV values determined by vasoconstriction secondary to the increase in interstitial pressure caused by perilesional edema, while neoplasms present histological evidence of tumor beyond the outer enhancing margin and, consequently, high rCBV values. These authors stress, however, that it may be difficult to differentiate between tuberculoma and metastasis utilizing PWI alone, as both lesions present with low perilesional rCBV values.

Cerebral abscesses, usually caused by a pyogenic bacterial organism, are characterized by a central area of cellular degradation with an accumulation of purulent exudate and a poorly vascularized capsule of collagen which causes a reduction in the rCBV (Figure 8). However, there are descriptions of cases with increases in the rCBV in the capsular portion of the lesion that are enhanced after the administration of a contrast agent. Holmes et al. stressed that this discordance between the rCBV values found with abscesses may be explained by the measurement of only one arbitrary area of the lesion, while Ferreira et al. highlighted that, in latter stages, the capsule of the abscess may present an increase in the rCBV.

The differentiation between cerebral abscesses and cystic or necrotic tumors can be attained utilizing rCBV maps. While the capsular portion of abscesses is hypovascularized causing a reduction in the rCBV, the peripheral portion of tumors is hypervascularized and, thus, presents an increase in the rCBV.

Other clinical applications of perfusion-weighted MRI

Perfusion-weighted imaging has been utilized for other clinical applications, such as, in the viability of tissue surrounding areas of acute cerebral ischemia (ischemic penumbra), evaluation of tumefactive demyelinating lesions, therapeutic response of patients submitted to anti-angiogenic drug therapy, characterization of other diseases including reversible posterior encephalopathy or hypertensive encephalopathy, dementia, epilepsy, migraine and the effect of psychoactive drugs such as cocaine, with many publications available in the literature.
References

